3.3.94 \(\int \sec ^n(e+f x) (1+\sec (e+f x))^{5/2} \, dx\) [294]

3.3.94.1 Optimal result
3.3.94.2 Mathematica [C] (warning: unable to verify)
3.3.94.3 Rubi [A] (verified)
3.3.94.4 Maple [F]
3.3.94.5 Fricas [F]
3.3.94.6 Sympy [F(-1)]
3.3.94.7 Maxima [F]
3.3.94.8 Giac [F]
3.3.94.9 Mupad [F(-1)]

3.3.94.1 Optimal result

Integrand size = 21, antiderivative size = 162 \[ \int \sec ^n(e+f x) (1+\sec (e+f x))^{5/2} \, dx=\frac {2 (7+4 n) \sec ^{1+n}(e+f x) \sin (e+f x)}{f (1+2 n) (3+2 n) \sqrt {1+\sec (e+f x)}}+\frac {2 \sec ^{1+n}(e+f x) \sqrt {1+\sec (e+f x)} \sin (e+f x)}{f (3+2 n)}+\frac {2 \left (3+24 n+16 n^2\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},1-n,\frac {3}{2},1-\sec (e+f x)\right ) \tan (e+f x)}{f (1+2 n) (3+2 n) \sqrt {1+\sec (e+f x)}} \]

output
2*(7+4*n)*sec(f*x+e)^(1+n)*sin(f*x+e)/f/(4*n^2+8*n+3)/(1+sec(f*x+e))^(1/2) 
+2*sec(f*x+e)^(1+n)*sin(f*x+e)*(1+sec(f*x+e))^(1/2)/f/(3+2*n)+2*(16*n^2+24 
*n+3)*hypergeom([1/2, 1-n],[3/2],1-sec(f*x+e))*tan(f*x+e)/f/(4*n^2+8*n+3)/ 
(1+sec(f*x+e))^(1/2)
 
3.3.94.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 31.83 (sec) , antiderivative size = 398, normalized size of antiderivative = 2.46 \[ \int \sec ^n(e+f x) (1+\sec (e+f x))^{5/2} \, dx=-\frac {i 2^{-\frac {5}{2}+n} e^{-\frac {1}{2} i (3+2 n) (e+f x)} \left (\frac {e^{i (e+f x)}}{1+e^{2 i (e+f x)}}\right )^{\frac {3}{2}+n} \left (\frac {10 e^{i (2+n) (e+f x)} \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2} (-1-n),\frac {4+n}{2},-e^{2 i (e+f x)}\right )}{2+n}+\frac {5 e^{i (4+n) (e+f x)} \operatorname {Hypergeometric2F1}\left (1,\frac {1-n}{2},\frac {6+n}{2},-e^{2 i (e+f x)}\right )}{4+n}+\frac {e^{i n (e+f x)} \operatorname {Hypergeometric2F1}\left (1,-\frac {3}{2}-\frac {n}{2},1+\frac {n}{2},-e^{2 i (e+f x)}\right )}{n}+\frac {5 e^{i (1+n) (e+f x)} \operatorname {Hypergeometric2F1}\left (1,-1-\frac {n}{2},\frac {3+n}{2},-e^{2 i (e+f x)}\right )}{1+n}+\frac {e^{i (5+n) (e+f x)} \operatorname {Hypergeometric2F1}\left (1,1-\frac {n}{2},\frac {7+n}{2},-e^{2 i (e+f x)}\right )}{5+n}+\frac {10 e^{i (3+n) (e+f x)} \operatorname {Hypergeometric2F1}\left (1,-\frac {n}{2},\frac {5+n}{2},-e^{2 i (e+f x)}\right )}{3+n}\right ) \sec ^5\left (\frac {1}{2} (e+f x)\right ) (1+\sec (e+f x))^{5/2}}{f \sec ^{\frac {5}{2}}(e+f x)} \]

input
Integrate[Sec[e + f*x]^n*(1 + Sec[e + f*x])^(5/2),x]
 
output
((-I)*2^(-5/2 + n)*(E^(I*(e + f*x))/(1 + E^((2*I)*(e + f*x))))^(3/2 + n)*( 
(10*E^(I*(2 + n)*(e + f*x))*Hypergeometric2F1[1, (-1 - n)/2, (4 + n)/2, -E 
^((2*I)*(e + f*x))])/(2 + n) + (5*E^(I*(4 + n)*(e + f*x))*Hypergeometric2F 
1[1, (1 - n)/2, (6 + n)/2, -E^((2*I)*(e + f*x))])/(4 + n) + (E^(I*n*(e + f 
*x))*Hypergeometric2F1[1, -3/2 - n/2, 1 + n/2, -E^((2*I)*(e + f*x))])/n + 
(5*E^(I*(1 + n)*(e + f*x))*Hypergeometric2F1[1, -1 - n/2, (3 + n)/2, -E^(( 
2*I)*(e + f*x))])/(1 + n) + (E^(I*(5 + n)*(e + f*x))*Hypergeometric2F1[1, 
1 - n/2, (7 + n)/2, -E^((2*I)*(e + f*x))])/(5 + n) + (10*E^(I*(3 + n)*(e + 
 f*x))*Hypergeometric2F1[1, -1/2*n, (5 + n)/2, -E^((2*I)*(e + f*x))])/(3 + 
 n))*Sec[(e + f*x)/2]^5*(1 + Sec[e + f*x])^(5/2))/(E^((I/2)*(3 + 2*n)*(e + 
 f*x))*f*Sec[e + f*x]^(5/2))
 
3.3.94.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {3042, 4301, 27, 3042, 4504, 3042, 4293, 75}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (\sec (e+f x)+1)^{5/2} \sec ^n(e+f x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (\csc \left (e+f x+\frac {\pi }{2}\right )+1\right )^{5/2} \csc \left (e+f x+\frac {\pi }{2}\right )^ndx\)

\(\Big \downarrow \) 4301

\(\displaystyle \frac {2 \int \frac {1}{2} \sec ^n(e+f x) \sqrt {\sec (e+f x)+1} (4 n+(4 n+7) \sec (e+f x)+3)dx}{2 n+3}+\frac {2 \sin (e+f x) \sqrt {\sec (e+f x)+1} \sec ^{n+1}(e+f x)}{f (2 n+3)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec ^n(e+f x) \sqrt {\sec (e+f x)+1} (4 n+(4 n+7) \sec (e+f x)+3)dx}{2 n+3}+\frac {2 \sin (e+f x) \sqrt {\sec (e+f x)+1} \sec ^{n+1}(e+f x)}{f (2 n+3)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (e+f x+\frac {\pi }{2}\right )^n \sqrt {\csc \left (e+f x+\frac {\pi }{2}\right )+1} \left (4 n+(4 n+7) \csc \left (e+f x+\frac {\pi }{2}\right )+3\right )dx}{2 n+3}+\frac {2 \sin (e+f x) \sqrt {\sec (e+f x)+1} \sec ^{n+1}(e+f x)}{f (2 n+3)}\)

\(\Big \downarrow \) 4504

\(\displaystyle \frac {\frac {\left (16 n^2+24 n+3\right ) \int \sec ^n(e+f x) \sqrt {\sec (e+f x)+1}dx}{2 n+1}+\frac {2 (4 n+7) \sin (e+f x) \sec ^{n+1}(e+f x)}{f (2 n+1) \sqrt {\sec (e+f x)+1}}}{2 n+3}+\frac {2 \sin (e+f x) \sqrt {\sec (e+f x)+1} \sec ^{n+1}(e+f x)}{f (2 n+3)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (16 n^2+24 n+3\right ) \int \csc \left (e+f x+\frac {\pi }{2}\right )^n \sqrt {\csc \left (e+f x+\frac {\pi }{2}\right )+1}dx}{2 n+1}+\frac {2 (4 n+7) \sin (e+f x) \sec ^{n+1}(e+f x)}{f (2 n+1) \sqrt {\sec (e+f x)+1}}}{2 n+3}+\frac {2 \sin (e+f x) \sqrt {\sec (e+f x)+1} \sec ^{n+1}(e+f x)}{f (2 n+3)}\)

\(\Big \downarrow \) 4293

\(\displaystyle \frac {\frac {2 (4 n+7) \sin (e+f x) \sec ^{n+1}(e+f x)}{f (2 n+1) \sqrt {\sec (e+f x)+1}}-\frac {\left (16 n^2+24 n+3\right ) \tan (e+f x) \int \frac {\sec ^{n-1}(e+f x)}{\sqrt {1-\sec (e+f x)}}d\sec (e+f x)}{f (2 n+1) \sqrt {1-\sec (e+f x)} \sqrt {\sec (e+f x)+1}}}{2 n+3}+\frac {2 \sin (e+f x) \sqrt {\sec (e+f x)+1} \sec ^{n+1}(e+f x)}{f (2 n+3)}\)

\(\Big \downarrow \) 75

\(\displaystyle \frac {\frac {2 \left (16 n^2+24 n+3\right ) \tan (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},1-n,\frac {3}{2},1-\sec (e+f x)\right )}{f (2 n+1) \sqrt {\sec (e+f x)+1}}+\frac {2 (4 n+7) \sin (e+f x) \sec ^{n+1}(e+f x)}{f (2 n+1) \sqrt {\sec (e+f x)+1}}}{2 n+3}+\frac {2 \sin (e+f x) \sqrt {\sec (e+f x)+1} \sec ^{n+1}(e+f x)}{f (2 n+3)}\)

input
Int[Sec[e + f*x]^n*(1 + Sec[e + f*x])^(5/2),x]
 
output
(2*Sec[e + f*x]^(1 + n)*Sqrt[1 + Sec[e + f*x]]*Sin[e + f*x])/(f*(3 + 2*n)) 
 + ((2*(7 + 4*n)*Sec[e + f*x]^(1 + n)*Sin[e + f*x])/(f*(1 + 2*n)*Sqrt[1 + 
Sec[e + f*x]]) + (2*(3 + 24*n + 16*n^2)*Hypergeometric2F1[1/2, 1 - n, 3/2, 
 1 - Sec[e + f*x]]*Tan[e + f*x])/(f*(1 + 2*n)*Sqrt[1 + Sec[e + f*x]]))/(3 
+ 2*n)
 

3.3.94.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4293
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a^2*d*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]] 
*Sqrt[a - b*Csc[e + f*x]]))   Subst[Int[(d*x)^(n - 1)/Sqrt[a - b*x], x], x, 
 Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0]
 

rule 4301
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-b^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 
2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[b/(m + n - 1)   Int[(a + 
 b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n 
 - 4)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^ 
2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 
3.3.94.4 Maple [F]

\[\int \sec \left (f x +e \right )^{n} \left (\sec \left (f x +e \right )+1\right )^{\frac {5}{2}}d x\]

input
int(sec(f*x+e)^n*(sec(f*x+e)+1)^(5/2),x)
 
output
int(sec(f*x+e)^n*(sec(f*x+e)+1)^(5/2),x)
 
3.3.94.5 Fricas [F]

\[ \int \sec ^n(e+f x) (1+\sec (e+f x))^{5/2} \, dx=\int { \sec \left (f x + e\right )^{n} {\left (\sec \left (f x + e\right ) + 1\right )}^{\frac {5}{2}} \,d x } \]

input
integrate(sec(f*x+e)^n*(1+sec(f*x+e))^(5/2),x, algorithm="fricas")
 
output
integral((sec(f*x + e)^2 + 2*sec(f*x + e) + 1)*sec(f*x + e)^n*sqrt(sec(f*x 
 + e) + 1), x)
 
3.3.94.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^n(e+f x) (1+\sec (e+f x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(sec(f*x+e)**n*(1+sec(f*x+e))**(5/2),x)
 
output
Timed out
 
3.3.94.7 Maxima [F]

\[ \int \sec ^n(e+f x) (1+\sec (e+f x))^{5/2} \, dx=\int { \sec \left (f x + e\right )^{n} {\left (\sec \left (f x + e\right ) + 1\right )}^{\frac {5}{2}} \,d x } \]

input
integrate(sec(f*x+e)^n*(1+sec(f*x+e))^(5/2),x, algorithm="maxima")
 
output
integrate(sec(f*x + e)^n*(sec(f*x + e) + 1)^(5/2), x)
 
3.3.94.8 Giac [F]

\[ \int \sec ^n(e+f x) (1+\sec (e+f x))^{5/2} \, dx=\int { \sec \left (f x + e\right )^{n} {\left (\sec \left (f x + e\right ) + 1\right )}^{\frac {5}{2}} \,d x } \]

input
integrate(sec(f*x+e)^n*(1+sec(f*x+e))^(5/2),x, algorithm="giac")
 
output
integrate(sec(f*x + e)^n*(sec(f*x + e) + 1)^(5/2), x)
 
3.3.94.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^n(e+f x) (1+\sec (e+f x))^{5/2} \, dx=\int {\left (\frac {1}{\cos \left (e+f\,x\right )}+1\right )}^{5/2}\,{\left (\frac {1}{\cos \left (e+f\,x\right )}\right )}^n \,d x \]

input
int((1/cos(e + f*x) + 1)^(5/2)*(1/cos(e + f*x))^n,x)
 
output
int((1/cos(e + f*x) + 1)^(5/2)*(1/cos(e + f*x))^n, x)